Installation/Owner’s Manual
Barrier Gate Operator with Auto Spike System

Use this manual for circuit board 1601-010 Revision W or higher.

THIS PRODUCT IS TO BE INSTALLED AND SERVICED BY A TRAINED GATE SYSTEMS TECHNICIAN ONLY.
Visit www.dkslocator.com to find a professional installing and servicing dealer in your area.

Date Installed:______________________________
Installer/Company Name:__________________________
Phone Number:_________________________________

Leave Manual with Owner

Copyright 2018 DoorKing®, Inc. All rights reserved.

Conforms To UL STD 325
Certified To CSA STD C22.2 # 247
UL 325 Entrapment Protection

UL 325 Classifications

Class I - Residential Vehicular Gate Operator
A vehicular gate operator (or system) intended for use in garages or parking areas associated with a residence of one-to four single families.

Class II - Commercial/General Access Vehicular Gate Operator
A vehicular gate operator (or system) intended for use in a commercial location or building such as a multi-family housing unit (five or more single family units), hotel, garages, retail store, or other buildings accessible by or servicing the general public.

Class III - Industrial/Limited Access Vehicular Gate Operator
A vehicular gate operator (or system) intended for use in an industrial location or building such as a factory or loading dock area or other locations not accessible by or intended to service the general public.

Class IV - Restricted Access Vehicular Gate Operator
A vehicular gate operator (or system) intended for use in a guarded industrial location or building such as an airport security area or other restricted access locations not servicing the general public, in which unauthorized access is prevented via supervision by security personnel.

Gate Operator Category

Effective January 12, 2016

<table>
<thead>
<tr>
<th>Horizontal Slide, Vertical Lift, Vertical Pivot</th>
<th>Swing, Vertical Barrier (Arm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B1*, B2* or D</td>
<td>A, B1*, B2*, C or D</td>
</tr>
</tbody>
</table>

Type A - Inherent entrapment protection system.
Type B1 - Non-contact sensor (photoelectric sensor or the equivalent).
Type B2 - Contact sensor (edge device or equivalent).
Type C - Inherent force limiting, inherent adjustable clutch or inherent pressure relief device.
Type D - Actuating device requiring constant pressure to maintain opening or closing motion of the gate.

* B1 and B2 means of entrapment protection must be MONITORED.

Vertically Barrier Note: Barrier gate operators (arm) that is not intended to move toward a rigid object closer than 16 inches (406 mm) are not required to be provided with a means of entrapment protection.
Safety Information for Vertical Barrier Arm and Spikes

Down Loop
- Minimizes the potential of the arm closing when a vehicle is present.
- Number and placement of loop(s) is dependent on the application.

Hazard Stripes
- No stopping or standing zone.
- Permanently painted on pavement and easily visible.

Speed Bump
- Helps increase distance and time between vehicles.

Traffic Light
- Helps control traffic.

Speed Limit Sign
- Helps control traffic.

Warning Signs
- Permanently mounted on operator and arm and easily visible.
- Moving Gate Can Cause Serious Injury or Death
 - KEEP CLEAR Gate may move at any time without prior warning.
 - Do not allow children to operate the gate or play in the gate area.
 - This entrance is for vehicles only. Pedestrians must use separate entrance.

Non-Contact Sensor
- Minimizes the potential of the arm lowering on vehicular or other traffic that loops cannot sense.

Contact Sensor
- Minimizes the potential of the arm lowering on vehicular or other traffic that loops cannot sense.

Spike Warning and Illumination
- It is extremely important that traffic spikes are installed in an area that is illuminated and clearly marked with spike warning signs (DoorKing’s model 1615 illuminated warning sign kits).

Separate Pedestrian Walkway
- Located so pedestrians cannot come in contact with the barrier arm.

Moving Gate Can Cause Serious Injury or Death
- KEEP CLEAR Gate may move at any time without prior warning.
- Do not allow children to operate the gate or play in the gate area.
- This entrance is for vehicles only. Pedestrians must use separate entrance.
Safety Information for Vertical Barrier Arm and Spikes

Reduce the risk of injury or death, read and follow all instructions.

Familiarize yourself with safety warnings, instructions, illustrations, and wiring guidelines to ensure that the installation is performed in a safe and professional manner. Prior to installation check all local building codes and ordinances to ensure compliance.

Important: Barrier gate operator CANNOT sense a person under the raised arm.

This scenario is VERY DANGEROUS and MUST NEVER OCCUR!!

- Make sure all warning signs are on operator and arm and are easily visible.
- Do not install the operator in such a way that the arm moves within 2 feet of a rigid object.
- Spike Warning. It is extremely important that the traffic spikes are clearly marked with a warning sign of potential hazard to vehicles and the spike area is well illuminated.
- Speed limit through barrier area is 5 MPH. Install speed bumps, warning signs and hazard stripes where visible in the area of the barrier gate, failure to do so may result in injury, damage to operator and vehicle.
- Users should be familiar with proper use of operator, these include; hardware operation, reversing functions and testing, reversing loops, inherent reversing system, electric edges, photoelectric cells related external devices and possible hazards.
- Keep adults, children and objects away from operator and HAZARD ZONES.
- Automotive traffic only - No bicycles or motorcycles. Pedestrians MUST be provided with separate access.
- All electrical connections should be made in accordance with local electrical codes.
- Security features should be installed to avoid unauthorized use.
- Controls must be installed far enough away from the operator to avoid any contact when operating the controls but no further away from the operator than 50 ft. If the installed hardware is in violation of these restrictions remove the operator from service immediately and contact your service dealer.
- When manually operating the gate operator arm, the user MUST make sure that the gate area is clear BEFORE operating the controls. Any activity in the entrance and exit lanes should be monitored to ensure a safe operation when opening or closing the barrier gate. The motion of the barrier boom must be directly observable by the person operating the barrier. While the barrier boom is in motion NO pedestrian and NO vehicle shall be in the immediate vicinity of the barrier.
- When removing the operator lift the arm to the full open position and shut off power at the service panel.
- Operators and components should be properly installed and maintained following the recommended service schedule, test the operator monthly. Keep all debris away from operator housing vents and off of arm. Contact your service dealer for any maintenance or repairs.
- Vehicular operators can produce high levels of force, it is important that you are aware and eliminate possible HAZARDS; Pinch Points, Entrapment Areas, Absence of Controlled Pedestrian Access, Traffic Backup.
Quick Guide - 1

Quick Guide: Terminal Descriptions

Function is dependent on the setting of programming SW 1, switch 6.
When switch 6 is **OFF**, this input will cause the operator to rotate the arm to the up position. If the arm is in the down cycle, this input will reverse the arm to the up position. If this terminal has a constant input, the arm will remain in the up position regardless of any down input or timer command to rotate down.

When switch 6 is **ON**, this input will cause the operator to rotate the arm to the up position when it is down, and will cause the operator to rotate the arm to the down position when it is up. If the auto timer is turned **ON** (Not recommended if switch 6 is **ON**), this input will override the timer and rotate the arm to the down position. If the arm is in the down cycle, this input will reverse the arm to the up position.

Function is dependent on the setting of programming SW 1, switch 8.
When switch 8 is **ON**, the function of this input is identical to terminal 6. When switch 8 is **OFF**, this terminal becomes the logic output of the up loop detector.

Terminal #6 Note: Exceeding 250 mA of power from this terminal may cause the circuit board transformer to overheat, causing intermittent problems.

See page 7 for terminal wiring.
1603 SPECIFICATIONS

Use this manual for the Model 1603 operators with circuit board 1601-010 Rev W or higher ONLY.

Class of Operation
Model 1603 - UL 325 Class II, III, IV – ETL Listed

Type of Gate
Single Traffic Lane Vehicular Barrier Gate Only

Arm Types
Aluminum – Straight or Folding Arm

Max Arm Length
14 Ft.

Max Spike Length
9 Ft. (Three 3-ft spike sections)

Gate Cycles
High Cycle

Speed
90° in approximately 1.5 seconds

Pedestrian Protection
Inherent entrapment sensing system (Type A)
Provision for connection of a non-contact sensor (Type B1) and/or contact sensor (Type B2)

<table>
<thead>
<tr>
<th>Model #</th>
<th>Convenience Open</th>
<th>Horsepower - Volts</th>
<th>Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1603-180</td>
<td>No</td>
<td>1/2 HP - 115 VAC</td>
<td>5.7</td>
</tr>
<tr>
<td>1603-181</td>
<td>Yes</td>
<td>1/2 HP - 115 VAC</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Note: 208/230/460/575 VAC input voltage can be connected to the operator by installing an "Optional" High Voltage Kit (P/N 2600-266).

1603 Aluminum Arm
Folding arm assembly can be installed for low headroom application.

1603 Auto Spike System
Up to 3 spike sections can connect together.

Operator Extension Section
P/N 1603-168
Required

Spike Section
P/N 1603-165

Extension Section
P/N 1603-170
Optional

End Cap
P/N 1610-240

DoorKing, Inc. reserves the right to make changes in the products described in this manual without notice and without obligation of DoorKing, Inc. to notify any persons of any such revisions or changes. Additionally, DoorKing, Inc. makes no representations or warranties with respect to this manual. This manual is copyrighted, all rights reserved. No portion of this manual may be copied, reproduced, translated, or reduced to any electronic medium without prior written consent from DoorKing, Inc.
TABLE OF CONTENTS

IMPORTANT SAFETY INFORMATION

Safety-1-3

QUICK GUIDE - TERMINAL DESCRIPTIONS

Quick Guide-1

SPECIFICATIONS FOR 1603

Previous Page

SECTION 1 - INSTALLATION OF OPERATOR

1.1 Operator Positioning and Conduit Requirements
1.2 Concrete Pad Requirements
1.3 Mount Operator
1.4 Dual Operator Installation (Primary/Secondary)

SECTION 2 - WIRING

2.1 High Voltage Wire Runs
2.2 High Voltage Terminal Connections
2.3 Main Terminal Description
2.4 Control Wiring

SECTION 3 - INSTALLATION OF AUTO SPIKE SYSTEM

3.1 Connect Sections Together on Concrete Pad
3.2 Test Spikes when Operator Positioned on LEFT side
3.3 Test Spikes when Operator Positioned on RIGHT side
3.4 Secure EACH Section to Concrete

SECTION 4 - LOOP DETECTOR LANE SETUPS

4.1 Entry Lane Only
4.2 Exit Lane Only
4.3 2-Way Traffic Lane
4.4 Ticket Splitter Entry Lane
4.5 Operator Timer ON Entry Lane (No Down Loop)

SECTION 5 - ARM INSTALLATION

5.1 Mounting Hub
5.2 Mounting Aluminum Arm

SECTION 6 - ADJUSTMENTS

6.1 1601 Circuit Board Description and Adjustments
6.2 DIP-Switch SW 1 and SW 2 Settings
6.3 Magnetic Limit Adjustment
6.4 Reverse Sensor Adjustment
6.5 Manual Operation of Arm and Spikes

SECTION 7 - OPTIONAL CONVENIENCE OPEN SYSTEM

7.1 Circuit Board Settings and Descriptions
7.2 DC System Wire Schematic

SECTION 8 - OPTIONAL ACCESSORIES INSTALLATION

8.1 Contact Sensor (Reversing Edge)
8.2 Fan Kit
8.3 Heater Kit

SECTION 9 - TECHNICAL INSTRUCTIONS

9.1 Maintenance Schedule
9.2 Diagnostics Check
9.3 Troubleshooting
9.4 Accessories Parts List
Wiring Schematics 33-34
SEC-1000-065-G-12-18
2

1.1 Operator Positioning and Conduit Requirements

Prior to beginning the installation of the barrier gate operator, we suggest that you become familiar with the instructions, illustrations, and wiring guidelines in this manual. This will help insure that your installation is performed in an efficient and professional manner.

The proper installation of the vehicular barrier gate operator is an extremely important and integral part of the overall access control system. Check all local building ordinances and building codes prior to installing this operator. Be sure your installation is in compliance with local codes.

1.1 Operator Positioning and Conduit Requirements

Operator Mounted on LEFT Side of Traffic Lane Preferred (Factory Set)

The spike’s drive chain MUST be reversed so spikes rotate in correct direction when operator is on RIGHT side, see section 3.3.

Operator Mounted on RIGHT Side of Traffic Lane

DO NOT install operator or spikes on asphalt.

- The conduit requirements are for a typical barrier gate operator installation. **The conduit requirements for your application may vary from this depending on your specific needs.**
- Use only sweeps for conduit bends. Do not use 90° connectors as this will make wire pulls very difficult and can cause damage to wire insulation.
- We suggest that minimum 3/4-inch conduit be used.
- **Never** run low voltage rated wire insulation in the same conduit as high voltage rated wire insulation.
- Be sure that all conduits are installed in accordance with local codes.

Access Door

Stop

Severe Tire Damage

No Pedestrians

In Traffic Lane

Proceed Only When Spikes Are Down

Sign Sold Separately

Traffic Direction

Operator Mounted on LEFT Side of Traffic Lane Preferred (Factory Set)

Access Door

Conduit Runs

Traffic Direction

Primary/Secondary Interconnection Cable (Dual Operator Application Only)

Control and/or P.A.M.S. Wires (Low Voltage wire insulation)

Loop Lead-In Wires (Low Voltage wire insulation)

AC Input Power (High Voltage wire insulation)

Illuminated Sign AC Input Power (High Voltage wire insulation)

Elbow

NO

Sweep

YES

Note: Operator shown mounted on the LEFT side (preferred).
1.2 Concrete Pad Requirements

The operator and auto spike system must **ONLY** be installed on a **concrete pad** with a minimum 6 inch depth. The concrete pad must be **FLAT** and **LEVEL** (Check local building codes for restrictions). Reinforced concrete recommended.

Note: Operator shown mounted on the LEFT side of traffic lane (preferred).

Note: Operator extension section **REQUIRED** to connect to operator.

DO NOT install operator or spikes on asphalt.

6" Minimum Center operator and spikes along width of concrete pad.

Concrete length: 2 spike sections 124.5"

Concrete length: 3 spike sections 160.5"

It is recommended that the “Spike” sections not exceed 9 feet (Three 3-Ft spike sections) for proper operation.

1.3 Mount Operator

Remove breather pin from gear reducer AFTER the operator has been secured in place.

Inside Operator

- Secure the operator to the concrete pad with the mounting flange using 1/2" x 3" minimum sleeve anchors (not supplied).
- Approximate position of conduit runs.
- Sections **MUST** lay flat and level to operate properly!

Sleeve Anchor

- DO NOT secure sections at this time.

Access Door

Depth of concrete under the operator is determined by soil conditions and local building codes.
1.4 Dual Operator Installation (Primary/Secondary)

For use in areas needing more than three 3-Ft spike sections (9 ft. of spikes) in a traffic lane. Up to six 3-Ft spike sections (18 ft. of spikes) can be used with dual operators.

Install dual operators the same as installing two single operators except for:

- There are no end cap sections used for the spikes.
- RIGHT side operator spike’s drive chain will need to be reversed, see section 3.3.
- Operators need to be wired together with an interconnection cable (Sold separately).
- Each operator requires AC power.
- Both operator’s DIP-switches (SW 1, SW 2) must be set the same.
- Connect all loop detectors and access control devices to the PRIMARY operator ONLY.

When using Reverse Loops:

DIP-Switch settings: SW 1, switch 4 is OFF. SW 1, switch 5 is OFF. SW 1, switch 8 is OFF. Set other DIP-switches based on gate operation preferences. See page 16 for reverse loop wiring.

Interconnection cable: The BROWN wire must be connected to SECONDARY TERMINAL #9 along with the GRAY wire. All other terminal wire connections are the same as shown above.

Illustration shows four 3-ft spike sections (12 ft. of spikes). Each operator controls two 3-ft spike sections.

Illustration shows four 3-ft spike sections (12 ft. of spikes). Each operator controls two 3-ft spike sections.
SECTION 2 - WIRING

Before attempting to connect any wiring to the operator, be sure that the circuit breaker in the electrical panel is in the OFF position. Permanent wiring must be installed to the operator as required by local electrical codes. It is recommended that a licensed electrical contractor perform this work.

Since building codes vary from city to city, we highly recommend that you check with your local building department prior to installing any permanent wiring to be sure that all wiring to the operator (both high and low voltage) complies with local code requirements.

THIS GATE OPERATOR MUST BE PROPERLY GROUNDED!!

2.1 High Voltage Wire Runs

The distance shown in the chart is measured in “Feet” from the operator to the power source. If power wiring is greater than the maximum distance shown, it is recommended that a service feeder be installed. When large gauge wire is used, a separate junction box must be installed for the operator connection. The wire table is based on stranded copper wire. Wire run calculations are based on the NEC recommended maximum 3% voltage drop on the power line, plus an additional 10% reduction in distance to allow for other losses in the system.

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Voltage Required</th>
<th>Amps Required</th>
<th>Wire Size / Max Distance in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1603 1/2 HP</td>
<td>115</td>
<td>5.7</td>
<td>12 AWG 170</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 AWG 275</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 AWG 460</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 AWG 690</td>
</tr>
</tbody>
</table>

Never run low voltage rated wire insulation in the same conduit as high voltage rated wire insulation.

“Optional” Heater Installation Note: When installing a heater, refer to the “high voltage AC power wire size and distance limitations” table on the instruction sheet with the heater kit for AC power wire run limitations.

“Optional” High Voltage Kit Installation Note: When installing the high voltage kit for 208/230/460/575 VAC input power, refer to the “high voltage AC power wire size and distance limitations” table on the instruction sheet with the high voltage kit (P/N 2600-266) for AC power wire run limitations.

2.2 High Voltage Terminal Connections

- Route incoming high voltage power in it’s OWN conduit.
- Be sure wiring is installed in accordance with local codes. Be sure to color code all wiring.
- It is recommended that a surge suppressor be installed on the high voltage power lines to help protect the operator and circuit board from surges and power fluctuations.
- Dual operators (Primary/Secondary) require AC power to each operator.

Keep wire clear of all moving parts.

DO NOT power up and cycle the operator until the “DIP-Switches” have been set for the 1603 model (See pages 18 and 19). The operator will not function properly unless the switches have been correctly set.

Optional” Heater Installation Note: When installing a heater, refer to the “high voltage AC power wire size and distance limitations” table on the instruction sheet with the heater kit for AC power wire run limitations.

“Optional” High Voltage Kit Installation Note: When installing the high voltage kit for 208/230/460/575 VAC input power, refer to the “high voltage AC power wire size and distance limitations” table on the instruction sheet with the high voltage kit (P/N 2600-266) for AC power wire run limitations.

Note: “Optional” High Voltage Kit black and white wires connect the same as shown above.

Note: A separate power disconnect switch may be needed in your area. Check local building codes before installation.
Function is dependent on the setting of programming SW 1, switch 6. When switch 6 is OFF, this input will cause the operator to rotate the arm to the up position. If the arm is in the down cycle, this input will reverse the arm to the up position. If this terminal has a constant input, the arm will remain in the up position regardless of any down input or timer command to rotate down.

When switch 6 is ON, this input will cause the operator to rotate the arm to the up position when it is down, and will cause the operator to rotate the arm to the down position when it is up. If the auto timer is turned ON (Not recommended if switch 6 is ON), this input will override the timer and rotate the arm to the down position. If the arm is in the down cycle, this input will reverse the arm to the up position.

Function is dependent on the setting of programming SW 1, switch 8. When switch 8 is ON, the function of this input is identical to terminal 6. When switch 8 is OFF, this terminal becomes the logic output of the up loop detector.

This input is used when sequencing the 1603 with a slide or swing gate operator in PAMS applications. Activation of this input will rotate the arm to the up position or reverse an arm in the down cycle to the up position.

When the arm is in the down position, activation of this input has no effect. When the arm is in the up position, activation of this input will prevent the arm from rotating to the down position. If the arm is in the down cycle, activation of this input will reverse the arm to the up position.

This input is used when sequencing the 1603 with a slide or swing gate operator in PAMS applications. This input is only active after a MOMENTARY UP input is received. Activation of this input will rotate the arm to the up position or reverse an arm in the down cycle to the up position.

Relay contacts can be set for Normally Open (NO) or Normally Closed (NC) operation. Contact rating is 1 amp maximum at 24 Volts.

Terminal #6 Note: Exceeding 250 mA of power from this terminal may cause the circuit board transformer to overheat, causing intermittent problems.
2.4 Control Wiring for Single/Primary Operator

DoorKing Access Control System (Model 1833, 1835, 1837 or 1838) tracker system can be connected.

This system can keep track of gate operator cycle count, shorted inputs, loop detector problems, any forced entry attempts, if the gate has struck anything during the open or close cycle, power interruptions, etc.

For more detailed information refer to the Tracker Installation and Wiring Manual, DoorKing P/N 2358-010.

Terminal #6 Note:
Exceeding 250 mA of power from this terminal may cause the circuit board transformer to overheat, causing intermittent problems.

Type of wiring to be used on ALL external devices:
- A) Type CL2, CL2P, CL2R, or CL2X
- B) Other cable with equivalent or better electrical, mechanical, and flammability ratings.

Antenna mounted outside operator housing.

Coax Antenna Kit
P/N 1514-073

115 VAC Convenience Outlets
Power safety and opening devices that require 115 VAC power.

- **Up toggle position:** User toggles switch up to hold gate open.
- **Center toggle position:** Is neutral for normal operation.

WARNING
User MUST make sure gate area IS CLEAR before manually operating gate arm.

Non-Contact Sensor (Photo Sensors)
- 21" Typical Beam Height.
- 27.5" Max. Beam Height.

Contact and Non-Contact Sensors Note:
Helps minimizes the potential of the arm lowering on vehicular or other traffic that loops cannot sense.
SECTION 3 - AUTO SPIKE SYSTEM INSTALLATION

The operator and auto spike system must be installed on a flat and level concrete pad with a minimum 6 inch depth (Check local building codes for restrictions). Reinforced concrete recommended. It is recommended that the “Spike” sections not exceed 9 feet (Three 3-Ft spike sections) for proper operation.

3.1 Connect Sections Together on Concrete Pad

Snap all sections together using socket connectors with spikes aligned in UP position. DO NOT anchor them to the concrete at this time.

Note: Operator shown mounted on the LEFT side of traffic lane (preferred).

Note: Operator extension section with torsion shaft REQUIRED to connect to operator.

Sections MUST lay flat, even, straight and centered on concrete.

CORRECT Spike Positions
The spikes will retract towards oncoming traffic.
3.2 Test Spikes when Operator positioned on LEFT side

Note: If operator is positioned on RIGHT side, see next page.

DO NOT anchor the sections to the concrete until the spikes have been tested and they operate smoothly. If spikes are not in the correct UP and RETRACTED positions during operation as shown on previous page, some adjustment will be required (See below).

With operator in the spikes UP position, loosen both turnbuckles on crossed chain inside the operator to release chain from the lower sprocket....

....spikes can now be adjusted to the correct UP position as shown.

....replace the chain back onto lower sprocket and tighten both turnbuckles after spikes have been adjusted to the correct position.

Spike Adjustment
3.3 Test Spikes when Operator positioned on RIGHT side

When operator is mounted on the RIGHT side as shown, the chain MUST be reversed (See below).

DO NOT anchor the sections to the concrete until the spikes have been tested and they operate smoothly. If spikes are not in the correct UP and RETRACTED positions during operation, some adjustment will be required (See below).

Reverse Chain

Use the master links to disconnect the spike’s drive chain and reverse it so spikes will rotate in the correct direction. The spikes can also be adjusted to the correct position at this time (see below)

Spike Adjustment

Adjust spikes as shown.

Correct UP Position
3.4 Secure EACH Section to Concrete

Extreme force is exerted on the sections every time a vehicle drives over them. It is important that they have enough anchors in them to keep them securely in place.

After you have tested the spikes and are satisfied with the way they perform, without moving the sections, secure EACH section in place with sleeve anchors (8 sleeve anchors are located inside the spike sections. The ramps will need to be unbolted to gain access to the mounting holes). After ALL sections have been secured to the concrete, mount the end cap in place.

Maintenance Tip: It is important to check the sections every so often to make sure all the sleeve anchors have not loosened up. The spikes will NOT function well with loose sleeve anchors.

Secure sections and end cap to concrete with 3/8” x 3” minimum sleeve anchors (Not supplied).

Cut off excess threads flush with top of nut on the sleeve anchors that will come in contact with tires.

Note: Section illustrated without spike rod and white plastic supports to better show sleeve anchor mounting holes.

Cleaning the Spikes

The ramps will have to be unbolted and the tunnel will need to have the debris cleaned out every so often to keep the spikes in good working condition. The sleeve anchors mounted inside the tunnel will also need to be checked for looseness and repaired when necessary.
SECTION 4 - LOOP DETECTOR LANE SETUPS

Before attempting to connect any wiring to the operator, be sure that the circuit breaker in the electrical panel is in the OFF position. Permanent wiring must be installed to the operator as required by local electrical codes. It is recommended that a licensed electrical contractor perform this work.

Loop detector wiring shown is for DoorKing model 9409 Dual Channel and 9410 Single Channel plug-In loop detectors only. If using other loop detectors refer to the separate Loop Information Manual for installation instructions, loops/preformed loops and wiring diagrams. All inputs to the main terminal are NORMALLY OPEN.

4.1 Entry Lane Only

If the arming loop is not used, then a single channel loop detector can be used (9410) in the down loop port. Connect the down loop to loop 1 on this detector. Connect the access control device directly to main terminal 6 and 14.

Arming Loop Note: The arming loop only allows the access control device to function when a vehicle is on the loop, otherwise it will not function. This prevents pedestrians from gaining access through the vehicular gate.

Timer Note: The timer can be used with a down loop. When timer is ON with a down loop, it will start countdown when the arm has fully raised. Activation of the down loop will cancel timer countdown. Useful when an access control device has been activated but vehicle does not move forward to activate the down loop. The arm will remain UP. Timer will time out and lower the arm without the down loop being activated.

Type of wiring to be used on ALL external devices:
A) Type CL2, CL2P, CL2R, or CL2X.
B) Other cable with equivalent or better electrical, mechanical, and flammability ratings.
4.2 Exit Lane Only

SW 1, switch 4 is ON.

SW 1, switch 7 is OFF (Timer). The arm will rotate down after the vehicle clears the down loop. See note below.

Note: The timer can be used with a down loop. When timer is ON with a down loop, it will start countdown when the arm has fully raised. Activation of the down loop will cancel timer countdown. Useful when the automatic exit loop has been activated but vehicle does not move forward to activate the down loop. The arm will remain UP. Timer will time out and lower the arm without the down loop being activated.

Type of wiring to be used on ALL external devices:
A) Type CL2, CL2P, CL2R, or CL2X
B) Other cable with equivalent or better electrical, mechanical, and flammability ratings.
4.3 Two-Way Traffic Lane

When a vehicle enters, the down loop will be overridden by the automatic exit loop which will continue to hold the arm up. When the interior down loop has been cleared by the vehicle, the arm will lower.

When a vehicle exits, the automatic exit loop will raise arm and when the down loop is cleared, the arm will lower. The interior down loop is inoperative for exiting vehicles.

Single Channel

If the arming loop is not used, then a Single Channel Loop Detector can be used (9410) in the down loop port. Connect the down loops to loop 1 on this detector. Connect the access control device directly to main terminal 6 and 14.

Arming Loop Note: The arming loop only allows the access control device to function when a vehicle is on the loop, otherwise it will not function. This prevents pedestrians from gaining access through the vehicular gate.

Timer Note: The timer can be used with down loops. When timer is ON with a down loop, it will start countdown when the arm has fully raised. Activation of the down loop will cancel timer countdown. Useful when the access control device or automatic exit loop has been activated but vehicle does not move forward to activate the down loop. The arm will remain UP. Timer will time out and lower the arm without the down loop being activated.

Type of wiring to be used on ALL external devices:
A) Type CL2, CL2P, CL2R, or CL2X.
B) Other cable with equivalent or better electrical, mechanical, and flammability ratings.

SW 1, switch 4 is ON.
SW 1, switch 7 is OFF (Timer). The arm will rotate down after the vehicle clears the down loops. See timer note below.
4.4 Ticket Spitter Entry Lane

Note: The timer can be used with a down loop. When timer is ON with a down loop, it will start countdown when the arm has fully raised. Activation of the down loop will cancel timer countdown. Useful when the ticket spitter has been activated but vehicle does not move forward to activate the down loop. The arm will remain UP. Timer will time out and lower the arm without the down loop being activated.
4.5 Operator Timer ON Entry Lane (No Down Loop)

Arming Loop Note: The arming loop only allows the access control device to function when a vehicle is on the loop, otherwise it will not function. This prevents pedestrians from gaining access through the vehicular gate.

Reverse Loop Note: The reverse loops will prevent the arm from closing on a vehicle remaining in the arm's pathway. The timer will restart the countdown any time the reverse loop gets activated.

Adjust from 1 second (full counter clockwise) to approximately 59 seconds (full clockwise).

Type of wiring to be used on ALL external devices:

A) Type CL2, CL2P, CL2R, or CL2X.
B) Other cable with equivalent or better electrical, mechanical, and flammability ratings.
SECTION 5 - ARM INSTALLATION

The 14 ft. aluminum arm mounts on the same side of the operator as oncoming traffic (either straight or folding arm).

5.1 Mounting Hub

Operator in the Down position.

5.2 Mounting Aluminum Arm

Note: Make sure Warning decals are on BOTH sides of arm.

Test hub UP and DOWN position before installing arm.

Note: To install folding aluminum arm, refer to instruction sheet supplied in aluminum folding arm kit. P/N 1601-310
SECTION 6 - ADJUSTMENTS

The switch settings and adjustments in this chapter should be made after your installation and wiring to the operator is complete. Whenever any of the programming switches on the circuit board are changed, power must be shut-off, and then turned back on for the new setting to take effect.

6.1 1601 Circuit Board Description and Adjustments

Gate Tracker Activity LED
An automatic sensor system that senses entrapment of a solid object and is incorporated as a permanent and integral part of the operator.

Gate Operator Data Terminal
Operator status reporting; cycle count, shorted inputs, loop detector problems, power interruptions, etc. See page 7.

Single Channel Loop Detector

DoorKing Plug-In Loop Detectors
(Sold separately)

Dual Channel Loop Detector

Reverse Sensor
Adjust reversing sensitivity for the DOWN direction of arm. See page 22.

Auto Close Timer
Auto close timer (when turned on) SW 1, switch 7.

How LEDs Function
Illuminated LEDs indicates that low voltage power is being applied to the circuit board.

- **Input LEDs** should be OFF and will only illuminate when the input is activated.
- **Limit LEDs** will only illuminate when the respective limit sensor has been activated.

Self Test
Self test (when turned on) SW 1, switch 2.

DIP-Switches
Set the DIP-switches on the circuit board to the desired setting. See switch settings information on the next 3 pages.

- **Note:** SW 2, switch 1 **MUST** be set for the correct model operator that has been installed.

Arm Relay Contacts
(C – NC – NO) This relay can be used for a variety of purposes and is typically used to signal when the arm is up or down.

Dry Relay Contact
Relay activation is dependant on setting of SW 1, switch 5.

Dry relay contacts (terminals 12-13) can be set for Normally Open (NO) or Normally Closed (NC) operation by placing the relay shorting bar on the N.O. or N.C. pins respectively. See page 6 and next page.
6.2 DIP-Switch SW 1 and SW 2 Settings

The two DIP-switches located on the circuit board are used to program the operator to operate in various modes and to turn on or off various operating features. Whenever a switch setting is changed, power to the operator must be turned OFF and then turned back on for the new setting to take affect. Check and review ALL switch settings prior to applying power to the operator.

SW 1 (Top 8 Switches)

<table>
<thead>
<tr>
<th>Switch</th>
<th>Function</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Down Active when arm is full up.</td>
<td>OFF</td>
<td>Activation and then deactivation of the down loop or down / reverse input will cause the arm to rotate down only if the deactivation occurred after the arm reached the FULL UP position.</td>
</tr>
<tr>
<td></td>
<td>Down Active when arm is moving up or is up.</td>
<td>ON</td>
<td>Activation and then deactivation of the down loop or down / reverse input will cause the arm to rotate down AFTER reaching the FULL UP position regardless of when the deactivation occurred.</td>
</tr>
<tr>
<td>2</td>
<td>Self-Test</td>
<td>OFF</td>
<td>Normal setting. Self-test is turned off.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>Run self-test.</td>
</tr>
<tr>
<td>3</td>
<td>Gear Box Travel</td>
<td>OFF</td>
<td>Normal setting. Operator uses 360° of gearbox.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>Operator uses 180° of gearbox.</td>
</tr>
<tr>
<td>4</td>
<td>Down / Reverse Loop and Input</td>
<td>OFF</td>
<td>Normal setting. Down / Reverse loop and input will function as a REVERSE loop and REVERSE input.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>Normal setting. Down / Reverse loop and input will function as a down input and cause the arm to rotate down upon deactivation of the input. See SW 1, switch 1 for additional information.</td>
</tr>
<tr>
<td>5</td>
<td>Relay 1 Activation</td>
<td>OFF</td>
<td>Normal setting. Relay activates when the DOWN loop detector (DoorKing plug-in detector only) senses a vehicle presence.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>Relay activates when the UP loop detector (DoorKing plug-in detector only) senses a vehicle presence.</td>
</tr>
<tr>
<td>6</td>
<td>Up Input Function</td>
<td>OFF</td>
<td>Normal setting. Operator uses 180° of gearbox.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>Normal setting. Operates 360° of gearbox. Extends wear life of gearbox.</td>
</tr>
<tr>
<td>7</td>
<td>Timer</td>
<td>OFF</td>
<td>Normal setting. Relay activates when the DOWN loop detector (DoorKing plug-in detector only) senses a vehicle presence.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>Normal setting. Operator uses 360° of gearbox.</td>
</tr>
<tr>
<td>8</td>
<td>Up Loop Port Input</td>
<td>OFF</td>
<td>Normal setting. Relay activates when the UP loop detector plugged into the UP loop port will raise arm when activated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
</tbody>
</table>

SW 2 (Bottom 8 Switches)

<table>
<thead>
<tr>
<th>Switch</th>
<th>Function</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Model 1603</td>
<td>OFF</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
<tr>
<td>2</td>
<td>Multiple Input Memory Options</td>
<td>OFF</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
<tr>
<td></td>
<td>ON/OFF Switch</td>
<td>ON</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
<tr>
<td>3</td>
<td>Multiple Input Memory Options (SW2, Switch 2 must be ON)</td>
<td>Option 1 (OFF Position)</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
<tr>
<td></td>
<td>(SW1, Switch 4 must be ON)</td>
<td>Option 2 (ON Position)</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
<tr>
<td>4</td>
<td>Stop Arm Function</td>
<td>OFF</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
<tr>
<td>5</td>
<td>Reverse Delay</td>
<td>OFF</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
<tr>
<td>6</td>
<td>Arm Rotation Direction</td>
<td>OFF</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
<tr>
<td>7</td>
<td>Spare</td>
<td>OFF</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
<tr>
<td>8</td>
<td>Spare</td>
<td>OFF</td>
<td>Normal setting. Operator will respond to a single UP command, then require a DOWN command. Operator will not accept the next UP command until the previous DOWN command is in progress.</td>
</tr>
</tbody>
</table>
Option 1 - Override a DOWN Command SW2, Switch 3 OFF

Remote transmitters are recommended for this option.

1. Valid UP command given.

Option 1 CANNOT be used at distances OVER 12 feet. This allows multiple vehicles in this area which Option 1 WILL NOT keep track of. See Option 2 on next page.

2. Operator will raise arm.

Note: Operator will NOT accept another valid UP command until “1st Car” activates down loop.

3. 1st Car activates down loop.

Next Car

4. While 1st Car is on down loop, the next UP command is given.

5. Operator will override "1st Car's" DOWN command. Arm will remain up and wait for the “Next Car’s” down loop to be activated.

6. When “Next Car” activates then clears down loop, arm will lower.

Note:
If an UP command is given while the arm is lowering, the arm will raise.

Basic operator UP/DOWN cycle:
A. Valid UP command from the access control device will raise arm.
B. Vehicle activating and clearing the down loop will lower the arm.
Option 2 - Override Multiple DOWN Commands SW2, Switch 3 ON

Basic operator UP/DOWN cycle:

A. Valid **UP command** from the access control device will raise arm.

B. Vehicle activating and clearing the down loop will lower the arm.

This option allows the access control device and the barrier gate operator to have multiple vehicles in the area between them. The operator will count all the valid UP commands received and require a down loop activation for each one. The arm will lower only after the last vehicle activates then clears the down loop.

Remote transmitters are **NOT** recommended for this option because **one vehicle's remote** can accidentally be pressed **multiple times** which will get counted by the operator as multiple vehicles.

Note:
If an UP command is given while the arm is lowering, the arm will raise.

Valid UP command given
Access Control Device

Operator will raise arm

2

Operator will count each valid UP command from each vehicle as they enter.

3

4 **Operator will override multiple DOWN commands. Arm will remain up while counting the vehicles activating the down loop.**

5 **Operator will lower the arm ONLY after the last vehicle activates then clears the down loop.**
6.3 Magnetic Limit Adjustments

The operator has been preset at the factory to rotate 90°. **No adjustments are necessary when used in a normal 90° setup.**

If the arm needs to rotate less than 90°:

1. Turn operator power **OFF**.

2. Set the DIP-switch SW 1, switch 3 to **ON**.
 - This changes the rotation of the gearbox from 360° to 180° allowing the gearbox to rotate the arm less than 90°.
 - Note: The arm will **always** cycle to 90° open with the 360° gearbox setting.

3. Loosen magnet limit assembly nuts and slide the assemblies to the desired **UP** and **DOWN** positions.
 - Tighten nuts when desired positions are achieved.

6.4 Reverse Sensor

Reverse sensitivity adjustment will cause the barrier arm to reverse direction of travel should an object be encountered during the down cycle. The amount of force required for the arm to reverse direction depends on the reverse sensitivity potentiometer.

CAUTION: Keep pedestrians and vehicles clear of the arm zone while adjusting sensor!

While operator has AC power:

1. Turn control switch to **UP**. Arm will rotate **UP**.

2. Turn control switch to **DOWN**. While arm is traveling down, rotate reverse sensor clockwise until the **reverse LED lights up** and the arm reverses direction. Rotate reverse sensor back counterclockwise approximately 1/8 turn.

3. Repeat the adjustment as needed to find a satisfactory setting.
6.5 Manual Operation of Arm and Spikes

1. Unlock and remove access door.
2. Remove crank tool from inside access door.
3. Flip interlock assembly door up, **ALL** power will be disabled from operator, including battery back-up power on convenience open models.
4. Insert crank tool into motor pulley as shown.
5. Rotate crank tool to manually move operator arm and spikes up or down.
The optional convenience open system installed in your vehicular gate operator is designed as a convenience enhancement only. It is not designed or intended to provide continuous gate operation during a power outage. Its sole purpose is to provide a method to open the vehicular gate to allow unimpeded traffic flow when the gate and access control system is without power. If your access control system requires 100% power backup and continuous operation when primary (AC) power has failed, a power inverter / backup system, such as DoorKing’s Model 1000 is required.

- The convenience open system **cannot** provide continuous gate operation during a power outage.
- **This system cycles the arm to the open position one time only after AC power failure.**
- The convenience open system requires testing on a monthly basis to insure the batteries are fully charged and that the system is operational.
- The convenience open system uses two 12-volt, 3.0 amp-hour gel-cell batteries. These batteries should be replaced every two years on average, or sooner if required.
- Batteries are affected by temperature. Cold temperatures will reduce the effectiveness of the batteries. High temperatures will result in a shortened battery life.
- Batteries are not covered under warranty.

7.1 Circuit Board Settings and Descriptions

This convenience open system consist of a control board (1473-010), motor and power supply (batteries) providing a completely redundant drive system to open the barrier arm should a power outage occur. This system is not designed to maintain continuous barrier operation; rather it provides a convenient method to open the arm once during adverse conditions. **If continuous barrier and access control system operation is required, refer to the DoorKing Model 1000 Inverter / Backup Power System.**

DIP-Switches

<table>
<thead>
<tr>
<th>Switch</th>
<th>Function</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Auto Open Operation After Power Outage</td>
<td>OFF</td>
<td>DO NOT USE. Manual Mode.</td>
</tr>
<tr>
<td>2</td>
<td>Motor Dir Motor Direction</td>
<td>OFF</td>
<td>Set so that the arm opens to the UP direction upon loss of AC power.</td>
</tr>
<tr>
<td>3</td>
<td>AC on ACT Restore Power Operation</td>
<td>ON</td>
<td>DO NOT USE. Physical Input Required.</td>
</tr>
<tr>
<td>4</td>
<td>Timer-Off Limit-ON Operator Type</td>
<td>Timer-Off</td>
<td>DO NOT USE. “Run timer” is used and MUST be adjusted.</td>
</tr>
</tbody>
</table>

Operating Note: Arm will cycle to UP position automatically (DIP-Switch 1 ON) during an AC power failure. Operator’s DC limit sensor will stop and hold the arm in the UP position (DIP-Switch 4 ON). Operator will automatically return to normal operation once AC power has been restored (DIP-Switch 3 ON).

Battery LEDs

- **HEART BEAT LED**
 - Blinking: Indicates board is operating normally.
- **Battery LEDs**
 - **BATT STAT LED**
 - 2 Blinks: Replace batteries.
 - 3 Blinks: Battery level is too low.
 - 4 Blinks: Batteries are not connected.
 - 5 Blinks: Bad battery.
 - 6 Blinks: Battery charge current exceeds maximum, possible shorted cell.
 - **TRICKLE LED**
 - Steady Green LED: Battery is fully charged and a trickle charge is being used to maintain a full charge.
 - **CHARGE LED**
 - Steady Yellow LED: Battery is being bulk charged.
 - Blinking Yellow LED: Battery is 90% of a full charge.
 - **STAT LED**
 - 3 Blinks: Extreme temperature, charging suspended.

Reset Button

Press to reset board.

Clear Stat Button

Press and hold the CLEAR STAT button for 4 secs clears the battery replacement reminder counter and resets the beeper. LEDs will also indicate battery status.

Beeper

A beep every 20 seconds indicates that battery replacement is needed. Press and hold the CLEAR STAT button to reset the battery reminder beeper and clear the counter. LEDs will also indicate battery status.

Run Timer

DO NOT USE.

Initial Power Up Convenience Open Note:

The DC power is not present on the main circuit board until the first initial cycle.
7.2 DC System Wire Schematic

Run Timer Not Used

Arm Rotation Assembly in UP Position

Arm will cycle to UP position automatically during an AC power failure. DC limit sensor will stop and hold the arm in the UP position.
SECTION 8 - OPTIONAL ACCESSORIES INSTALLATION

8.1 Contact Sensor (Reversing Edge)

In addition to the electronic reversing device (ERD) an optional electric reversing edge may be installed offering additional protection to the arm, operator and obstruction. Available from DoorKing to fit all arm lengths.

1. Turn operator power OFF. Remove Cover.

2. Position the mounting channel at the end of the barrier arm and secure to the bottom of the arm using self-tapping metal screws (not supplied). Slide the reversing edge into the mounting channel.

3. Drill a 1/4-inch hole on the side of the operator housing beneath the operator arm shaft and not interfering with the internal components.

4. Install a plastic grommet (Not supplied) in the hole to protect the wire from chaffing on sharp metal edges.

5. Secure the wire to the arm and hub using wire ties (not supplied). Leave a wire loop to allow the arm to rotate freely. Make sure wire does not rub against with the cover.

6. Connect wires to terminals 9 and 14 without interfering with any of the operator’s moving parts. Re-install cover.
8.2 Fan Kit

An optional fan kit (P/N 1601-093) is recommended in hot humid climates to prevent heat and moisture build-up inside the housing.

1. Shut off AC power to operator.
 Turn off DC power switch on certain models.

2. Mount fan using 3 existing threaded studs and lock nuts supplied. Slide mounting tabs over existing air duct.

3. Route fan wires as shown. Use supplied wire stays and existing wire restrainers. Keep wires clear of all moving parts.

4. Connect the fan power wires.

5. Fan switch settings.
 - **ON** - Turns the fan on continuously.
 - **OFF** - Turns the fan off.
 - **AUTO** - Normal setting. Automatically turns the fan **ON** when the temperature rises above 90°F inside the housing, and turns the fan **OFF** when the temperature drops below 90°F.

- Keep intake vents clear of debris.
8.3 Heater Kit

To avoid the gearbox oil from freezing an optional heater kit (115 VAC - P/N 1601-092) is recommended in areas where temperatures routinely drop below 40°F (4°C).

1. Shut off AC power to operator. Turn off DC power switch on certain models.

2. Route heater wires as shown. Use supplied wire stays and existing wire restrainers. Keep wires clear of all moving parts.

3. Mount heater with 2 lock nuts. Place the 2 supplied washers between the operator wall and the heater to create an air gap.

4. Connect the heater wires.

5. Heater switch settings.

- **AUTO** - Normal setting. Automatically turns the heater **ON** when the temperature drops below 40°F inside the housing, and turns the heater **OFF** when the temperature rises above 40°F inside the housing.

- **OFF** - Turns the heater off.

- **ON** - Turns the heater on continuously. The heater will become **VERY HOT** when running continuously.
9.1 Maintenance

When servicing the gate operator, always check any external reversing devices (loops, photo eyes, etc.) for proper operation. If external reversing devices cannot be made operable, do not place this operator in service until the malfunction can be identified and corrected.

Always check the inherent reversing system when performing any maintenance. If the inherent reversing system cannot be made operable, remove this operator from service until the cause of the malfunction is identified and corrected. Keeping this operator in service when the inherent reversing system is malfunctioning creates a hazard for persons which can result in serious injury or death should they become entrapped.

If replacing arm, make sure warning decal is on both sides of arm.

When servicing this gate operator, always turn power OFF!! If equipped with batteries, make sure battery power switch is OFF.

If gearbox requires oil, use only Mobil SHC-629 Synthetic Gear Oil. Do not completely fill gearbox with oil. Gearbox is full when oil completely covers inspection window.

Table: Operator Component Maintenance

<table>
<thead>
<tr>
<th>Operator Component</th>
<th>Maintenance</th>
<th>Monthly Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm(s)</td>
<td>Check for alignment, tightness and wear.</td>
<td>✓ 6 12</td>
</tr>
<tr>
<td>Auto Spike System</td>
<td>Check for shaft alignment, tightness of hardware and wear of spikes. Make sure all tunnel plates and ramps are securely fastened to concrete.</td>
<td>✓</td>
</tr>
<tr>
<td>Drive Belts(s)</td>
<td>Check for alignment, tightness and wear.</td>
<td>✓ 6 12</td>
</tr>
<tr>
<td>ERD Reversing System</td>
<td>Check that the arm reverses on contact with an object in closing cycle. Adjust the reversing sensor if necessary.</td>
<td>✓ 6 12</td>
</tr>
<tr>
<td>Batteries (On select models)</td>
<td>If operator is equipped with optional convenience open system, check the batteries for any leakage or loose connections. Batteries should be replaced every two years.</td>
<td>✓</td>
</tr>
<tr>
<td>Convenience Open System (Not on all models)</td>
<td>If operator is equipped with optional DC open system, check to be sure the system opens the arm upon loss of AC power. Operator should resume normal operation when AC power has been restored.</td>
<td>✓ 6 12</td>
</tr>
<tr>
<td>Fire Dept.</td>
<td>Check emergency vehicle access device for proper operation.</td>
<td>✓ 6 12</td>
</tr>
<tr>
<td>Gearbox</td>
<td>Check oil level and fill if necessary. Do not overfill.</td>
<td></td>
</tr>
<tr>
<td>Linkages</td>
<td>Check internal linkages for wear. Inspect bushing for wear.</td>
<td>✓ 6 12</td>
</tr>
<tr>
<td>Loop(s)</td>
<td>Check all external ground loops for proper operation.</td>
<td>✓ 6 12</td>
</tr>
<tr>
<td>Pulleys</td>
<td>Check set screw for tightness.</td>
<td>✓ 6 12</td>
</tr>
<tr>
<td>External Reverse Device(s)</td>
<td>Check electric reversing edges and photo-cells for proper operation.</td>
<td>✓ 6</td>
</tr>
<tr>
<td>Complete System</td>
<td>Perform a complete system check. Include all reversing devices, loops, access system devices, Fire Dept. access devices, etc.</td>
<td>✓</td>
</tr>
</tbody>
</table>
9.2 Diagnostics Check

Have the following diagnostic tools available: VOM meter with minimum voltage memory or min-max range to check voltage and continuity. Meg-ohm meter capable of checking up to 500 megohms of resistance to properly check ground loop integrity.

A malfunction can be isolated to one of the following:

- Gate Operator
- Loop System
- Keying Devices.

Disconnect all external inputs to the circuit board terminal.

1. Use caution when checking high voltage areas: terminals 1 through 6, the motor capacitor and the motor.

2. Check the input indicator LED’s. They should only come ON when a keying device (card reader, push button, etc.) is activated. If any of the input LED’s are ON continuously, this will cause the gate operator to hold the arm up. Disconnect the keying devices one at a time until the LED goes OFF (see troubleshooting guide).

3. If the operator stops or holds open, check external entrapment protection devices for any shorts or malfunction.

4. A malfunction in a loop or loop detector can cause the gate operator to hold the arm up, or not detect a vehicle when it is present over the loop. Pull the loop detector circuit boards from the loop ports on the operator circuit board. If the malfunction persists, the problem is not with the loop system. For more information refer to the loop detector instruction sheet and the DoorKing Loop and Loop Detector Information Manual.

5. Check that there are no shorted or open control wires from the keying devices to the gate operator. If a keying device fails to open the arm, momentarily jumper across terminals 6 and 14 on the control board terminal. If the gate operator starts, this indicates that a problem exist with the keying device and not with the gate operator.

6. Check the supply voltage and batteries. A voltage drop on the supply line (usually caused by using wires that are too small) will cause the operator to malfunction. Batteries should be fully charged for proper operation, replace batteries every two years on average.

9.3 Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Solution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator will not run. Power LED is OFF.</td>
<td>• Check that power to the operator is turned ON.</td>
</tr>
<tr>
<td></td>
<td>• Check for 117 VAC with a voltmeter at control board terminals 1 and 2. If voltage measures 0, check power supply to operator or check terminal strip. If voltage measures OK, replace control board.</td>
</tr>
</tbody>
</table>
9.3 Troubleshooting Continued

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Solution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator will not run. Power LED is ON.</td>
<td>• Momentarily jumper terminal 6 to terminal 14. If input LED does not come ON, check terminal strip or replace control board. If LED does come on, go to the next step.</td>
</tr>
<tr>
<td></td>
<td>Remove circuit board from the terminal strip and shut off power to the operator:</td>
</tr>
<tr>
<td></td>
<td>1. Momentarily jumper terminal 2 to terminal 3 (Caution – High Voltage). Momentarily turn power ON. The motor should run. Make sure power is OFF. Remove the jumper.</td>
</tr>
<tr>
<td></td>
<td>2. Momentarily jumper terminal 2 to terminal 4 (Caution – High Voltage). Momentarily turn power ON. The motor should run. Make sure power is OFF. Remove the jumper.</td>
</tr>
<tr>
<td></td>
<td>• If motor does not run in either or both steps above, bad motor, motor capacitor or wiring to motor.</td>
</tr>
<tr>
<td>Arm rotates up, but will not rotate down.</td>
<td>• Check LEDs on terminals 6, 7 and 9. Any of these ON will hold the arm in the UP position. This indicates a shorted input.</td>
</tr>
<tr>
<td></td>
<td>• Check the LEDs on the loop detectors. Any ON will hold the arm in the UP position. Possible loop or loop detector problem.</td>
</tr>
<tr>
<td></td>
<td>• If auto timer is not used (SW1, switch 7 off), check to be sure SW1, switch 6 is in the ON position. This will cause terminal 6 to rotate the arm down when it is activated.</td>
</tr>
<tr>
<td></td>
<td>• Check to be sure SW1, switch 4 is ON. This will cause terminal 8 activation, then deactivation to rotate arm down.</td>
</tr>
<tr>
<td>Down input / down loop will not rotate arm to down position.</td>
<td>• Check to be sure SW1, switch 4 is in the ON position.</td>
</tr>
<tr>
<td></td>
<td>• Down input must be activated, and then deactivated to cause arm to rotate down.</td>
</tr>
<tr>
<td>Loop detector LED is on continuously.</td>
<td>• Activate the reset switch on the loop detector.</td>
</tr>
<tr>
<td></td>
<td>• Decrease loop detector sensitivity.</td>
</tr>
<tr>
<td></td>
<td>• Check loop wire for resistance to ground with meg-ohm meter. Should be 100 meg-ohms or higher. If less than 50 meg-ohms, replace loop wire.</td>
</tr>
<tr>
<td></td>
<td>• Be sure loop lead-in wire is twisted at least 6 turns per foot.</td>
</tr>
<tr>
<td></td>
<td>• Be sure all loop connections are soldered.</td>
</tr>
<tr>
<td></td>
<td>• Replace loop detector.</td>
</tr>
<tr>
<td>Loop detector LED never activates.</td>
<td>• Increase loop detector sensitivity.</td>
</tr>
<tr>
<td></td>
<td>• Check continuity of loop wire. Should be 0 ohms. If continuity check indicates anything other than 0 ohms, check all connections. Replace loop wire.</td>
</tr>
<tr>
<td></td>
<td>• Move loop detector board to the other loop detector port on the control board, and then check loop operation. If loop detector still fails, replace loop board.</td>
</tr>
<tr>
<td></td>
<td>• If loop detector operates OK in the other loop port, replace control board.</td>
</tr>
<tr>
<td>Battery back-up system will not raise arm upon power outage.</td>
<td>• Check that the back-up system toggle switch is in the ON position.</td>
</tr>
<tr>
<td></td>
<td>• Check to be sure that the 1473-010 battery back-up control board switch settings are set as described in SECTION 7.</td>
</tr>
<tr>
<td></td>
<td>• Check the batteries for proper voltage, replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>• Replace the 1473-010 Back-up control board.</td>
</tr>
<tr>
<td>Operator has intermittent functionality problems that vary.</td>
<td>• The main terminal #5 250 mA power has been exceeded. Check total amp draw of connected device(s).</td>
</tr>
</tbody>
</table>
9.4 Accessories Parts List

The following accessories are available for the 1603 barrier gate operator.

Plug-In Loop Detector - Plug directly into ports on circuit board simplifying wiring.
- P/N 9410-010 - Single channel detector.
- P/N 9409-010 - Two channel detector.
- P/N 9411-010 - Single channel detector with aux relay. Controls arm lowering for vehicles but NOT for pedestrians.
- P/N 9416-010 - Single channel low power draw detector
- P/N 9415-010 - Dual channel low power draw detector

Loop Wire - XLPE insulation is available in 500 and 1000 foot rolls, available in Black, Blue and Red insulation.

Loop Sealant - P/N 2600-771 Asphalt, P/N 2600-772 Concrete

Meg Ohm Meter - Checks the integrity of ground loops. P/N 9401-045

Reverse Edge - Installs on the bottom of the aluminum arm. P/N 8080-016 - 6 ft. Available from DoorKing to fit all arm lengths.

Photo Cell - Prevents arm from lowering on vehicles or pedestrians.
- Miller Edge Reflective-Guard Model RG
- Miller Edge Prime-Guard Model PG
- EMX Industries Model IRB-MON
- EMX Industries Model IRB-RET
- Omron Model E3K-R10K4
- Seco-Larm Model E-936-S45RRGQ
- Seco-Larm Model E-960-D90GQ

Time Clock - 7 clock, used to automatically open gate at pre-set time, fits inside operator.
- P/N 2600-791 - 7 day clock

Surge Devices - Helps prevent circuit board failure caused by lightning strikes and power surges.
- P/N 1879-080 - High Voltage
- P/N 1878-010 - Low Voltage

Replacement Battery - Convenience open system. P/N 1801-009 (2 required)

Speed Bump - Prefabricated 6-foot speed bump reduces traffic speed through gate system. P/N 1610-150

Heater Kit - Thermostatically controlled heater for cold weather areas. 115 VAC - P/N 1601-092

Fan Kit - Thermostatically controlled fan for hot humid environments. P/N 1601-093

Manual Gate Control Toggle - Allows user to manually operate gate arm. Fits inside single-gang electrical box. P/N 1200-017

Interconnection Cable - Interconnection cable contains all the necessary wires to interconnect primary / secondary operators.
- Cable length: 30 ft. - P/N 2600-755 40 ft. - P/N 2600-756 50 ft. - P/N 2600-757

High Voltage Kit - Alter the input AC voltage on a 115 VAC 1603 to 208, 230, 460 or 575 VAC. P/N 2600-266

Gate Tracker™ - Optional control board allows the barrier gate operator to report activity to a companion 1833, 1835, 1837 or 1838 access control system.

Auto Spike System Parts

Operator Extension Section - 1.5 Ft torsion shaft, tunnel plate and ramp. P/N 1603-168

Extension Section - 1.5 Ft extension shaft, tunnel plate and ramp. P/N 1603-170

Spike Section - 3 Ft spike shaft, tunnel plate and ramp. P/N 1603-165

End Cap - P/N 1610-240

Aluminum Arm Only - 14-foot replacement aluminum arm. P/N 1601-571

Aluminum Folding Arm Kit - Low headroom applications (Arm included). P/N 1601-610

Aluminum Arm Mounting Kit - Aluminum mounting bracket, hub and mounting hardware. P/N 1601-242

Arm Padding - Foam padding for the aluminum or wood arm. P/N 1601-211

Lighted Auto Spike Warning Sign - Backlit spike warning sign with adjustable light for spike illumination. P/N 1615-081

Traffic Light (Red, Green) - Manage the traffic flow with red-green lights. Bolts onto the 1603 operator. P/N 1603-210
1/2 HP 115 VAC

Chassis Ground

115 VAC

1/2 HP

AC Power UP/Auto/Down

Current Sensor

Magnetic Limit Sensor

Up Limit Magnet

Down Limit Magnet (White Dot)

Neutral

Power

Black

Black

Yellow

Orange
THIS PRODUCT IS TO BE INSTALLED AND SERVICED BY A TRAINED GATE SYSTEMS TECHNICIAN ONLY.
Visit www.dkslocator.com to find a professional installing and servicing dealer in your area.